Saturday 28 October 2017

Coeficientes de filtro de média móvel


Resposta de Frequência do Filtro de Média Móvel e Filtro FIR Compare a resposta de frequência do filtro de média móvel com a do filtro FIR regular. Defina os coeficientes do filtro FIR regular como uma seqüência de 1s escalado. O fator de escala é 1filterLength. Crie um objeto de sistema dsp. FIRFilter e defina seus coeficientes para 140. Para calcular a média móvel, crie um objeto System dsp. MovingAverage com uma janela deslizante de comprimento 40 para calcular a média móvel. Ambos os filtros têm os mesmos coeficientes. A entrada é Gaussian ruído branco com uma média de 0 e um desvio padrão de 1. Visualize a resposta de freqüência de ambos os filtros usando fvtool. As respostas de freqüência correspondem exatamente, o que prova que o filtro de média móvel é um caso especial do filtro FIR. Para comparação, veja a resposta de freqüência do filtro sem ruído. Compare a resposta de freqüência dos filtros com a do filtro ideal. Você pode ver que o lobo principal na faixa de passagem não é plano e as ondulações na banda de parada não são restritas. A resposta de frequência dos filtros de média móvel não corresponde à resposta em frequência do filtro ideal. Para realizar um filtro FIR ideal, altere os coeficientes de filtro para um vetor que não seja uma seqüência de 1s escalado. A resposta de freqüência do filtro muda e tende a se aproximar da resposta do filtro ideal. Desenhe os coeficientes do filtro com base em especificações de filtro predefinidas. Por exemplo, projete um filtro FIR equiripple com uma freqüência de corte normalizada de 0,1, uma ondulação de banda passante de 0,5 e uma atenuação de banda de interrupção de 40 dB. Use fdesign. lowpass para definir as especificações do filtro eo método de design para projetar o filtro. A resposta dos filtros na banda de acesso é quase plana (semelhante à resposta ideal) e a banda de interrupção tem efeitos limitados. MATLAB e Simulink são marcas registradas da The MathWorks, Inc. Consulte mathworkstrademarks para obter uma lista de outras marcas comerciais de propriedade da The MathWorks, Inc. Outros produtos ou marcas são marcas comerciais ou marcas registradas de seus respectivos proprietários. Selecionar seus filtros CountryFIR, filtros IIR e equação de diferença de coeficientes constantes lineares Filtros de média móvel causal (FIR) Nós discutimos sistemas em que cada amostra da saída é uma soma ponderada de (algumas das) amostras da entrada. Vamos tomar um sistema de soma ponderada causal, onde causal significa que uma dada amostra de saída depende apenas da amostra de entrada atual e outros insumos mais cedo na seqüência. Nem os sistemas lineares em geral, nem os sistemas finitos de resposta ao impulso em particular, precisam ser causais. No entanto, a causalidade é conveniente para um tipo de análise que iria explorar em breve. Se simbolizamos as entradas como valores de um vetor x. E as saídas como valores correspondentes de um vetor y. Então tal sistema pode ser escrito como onde os valores de b são quotweights aplicados às amostras de entrada atuais e anteriores para obter a amostra de saída atual. Podemos pensar na expressão como uma equação, com o sinal de igual signo igual a, ou como uma instrução processual, com o sinal de igual significação atribuição. Vamos escrever a expressão para cada amostra de saída como um loop MATLAB de instruções de atribuição, onde x é um vetor N-comprimento de amostras de entrada, e b é um vetor M-comprimento de pesos. A fim de lidar com o caso especial no início, vamos incorporar x em um vetor mais longo xhat cujas primeiras M-1 amostras são zero. Vamos escrever a soma ponderada para cada y (n) como um produto interno, e faremos algumas manipulações das entradas (como inverter b) para este fim. Esse tipo de sistema é muitas vezes chamado de filtro de média móvel, por razões óbvias. De nossas discussões anteriores, deve ser óbvio que tal sistema é linear e invariante ao deslocamento. Claro, seria muito mais rápido usar a convolução de função MATLAB conv () em vez do nosso mafilt (). Em vez de considerar as primeiras amostras M-1 da entrada como sendo zero, poderíamos considerá-las iguais às últimas amostras M-1. Isso é o mesmo que tratar a entrada como periódica. Bem, use cmafilt () como o nome da função, uma pequena modificação da função mafilt () anterior. Na determinação da resposta de impulso de um sistema, não há geralmente nenhuma diferença entre estes dois, desde que todas as amostras não-iniciais da entrada são zero: Uma vez que um sistema deste tipo é linear e invariante de turno, sabemos que seu efeito em qualquer Sinusoid será apenas a escala e deslocá-lo. Aqui é importante que usemos a versão circular A versão circularmente convoluta é deslocada e escalada um pouco, enquanto a versão com convolução ordinária é distorcida no início. Vamos ver o que a escala exata e deslocamento é usando um fft: Tanto a entrada ea saída têm amplitude apenas nas freqüências 1 e -1, que é como deveria ser, uma vez que a entrada era uma sinusoid eo sistema era linear. Os valores de saída são maiores numa razão de 10,62518 1,3281. Este é o ganho do sistema. E quanto à fase Nós só precisamos olhar onde a amplitude é diferente de zero: A entrada tem uma fase de pi2, como nós pedimos. A fase de saída é deslocada por um adicional 1.0594 (com sinal oposto para a freqüência negativa), ou cerca de 16 de um ciclo à direita, como podemos ver no gráfico. Agora vamos tentar uma sinusoid com a mesma freqüência (1), mas em vez de amplitude 1 e fase pi2, vamos tentar amplitude 1,5 e fase 0. Sabemos que apenas a freqüência 1 e -1 terá amplitude não-zero, então vamos apenas olhar Para eles: novamente a relação de amplitude (15.937712.0000) é 1.3281 - e quanto à fase é novamente deslocada por 1.0594 Se esses exemplos são típicos, podemos prever o efeito do nosso sistema (resposta ao impulso .1 .2 .3 .4 .5) em qualquer sinusoide com freqüência 1 - a amplitude será aumentada em um fator de 1,3281 e a fase (freqüência positiva) será deslocada em 1,0594. Poderíamos continuar a calcular o efeito desse sistema sobre sinusóides de outras freqüências pelos mesmos métodos. Mas há uma maneira muito mais simples, e uma que estabelece o ponto geral. Dado que a circunvolução (circular) no domínio do tempo significa a multiplicação no domínio da frequência, daí decorre que, por outras palavras, a DFT da resposta de impulso é a razão da DFT da saída para a DFT da entrada. Nesta relação os coeficientes de DFT são números complexos. Desde abs (c1c2) abs (c1) abs (c2) para todos os números complexos c1, c2, esta equação nos diz que o espectro de amplitude da resposta ao impulso será sempre a relação do espectro de amplitude da saída para a da entrada . No caso do espectro de fase, ângulo (c1c2) ângulo (c1) - ângulo (c2) para todos os c1, c2 (com a condição de que as fases diferentes por n2pi são considerados iguais). Portanto, o espectro de fase da resposta ao impulso será sempre a diferença entre os espectros de fase da saída e da entrada (com quaisquer correções de 2pi são necessárias para manter o resultado entre - pi e pi). Podemos ver os efeitos de fase mais claramente se desempacotarmos a representação da fase, isto é, se adicionarmos vários múltiplos de 2pi conforme necessário para minimizar os saltos que são produzidos pela natureza periódica da função ângulo (). Embora a amplitude e a fase sejam normalmente utilizadas para apresentação gráfica e mesmo tabular, uma vez que são uma forma intuitiva de pensar os efeitos de um sistema sobre os vários componentes de frequência de sua entrada, os coeficientes de Fourier complexos são mais úteis algébricamente, A expressão simples da relação A abordagem geral que acabamos de ver funcionará com filtros arbitrários do tipo esboçado, em que cada amostra de saída é uma soma ponderada de algum conjunto de amostras de entrada. Como mencionado anteriormente, estes são muitas vezes chamados filtros de resposta de impulso finito, porque a resposta ao impulso é de tamanho finito, ou às vezes filtros de média móvel. Podemos determinar as características de resposta de freqüência de tal filtro a partir da FFT de sua resposta de impulso e também podemos projetar novos filtros com características desejadas por IFFT a partir de uma especificação da resposta de freqüência. Filtros Autoregressivos (IIR) Não haveria nenhum ponto em ter nomes para filtros FIR, a menos que houvesse algum outro tipo de distinção, de modo que aqueles que estudaram pragmática não ficarão surpresos ao saber que existe de fato outro tipo principal Do filtro tempo-invariante linear. Estes filtros são às vezes chamados recursivos porque o valor de saídas anteriores (assim como entradas anteriores) importa, embora os algoritmos sejam geralmente escritos usando construções iterativas. Eles também são chamados filtros Infinite Impulse Response (IIR), porque em geral sua resposta a um impulso continua para sempre. Eles também são chamados de filtros auto-regressivos, porque os coeficientes podem ser considerados como o resultado de fazer a regressão linear para expressar valores de sinal em função de valores de sinal anteriores. A relação dos filtros FIR e IIR pode ser vista claramente numa equação de diferença de coeficiente constante linear, isto é, estabelecendo uma soma ponderada de saídas igual a uma soma ponderada de entradas. Isto é como a equação que damos anteriormente para o filtro FIR causal, exceto que, além da soma ponderada dos insumos, também temos uma soma ponderada de saídas. Se quisermos pensar nisso como um procedimento para gerar amostras de saída, precisamos reorganizar a equação para obter uma expressão para a amostra de saída atual y (n), Adotando a convenção de que a (1) 1 (por exemplo, escalando outros como E bs), podemos nos livrar do termo 1a (1): y (n) b (1) x (n) b (2) x (n-1). B (Nb1) x (n-nb) - a (2) y (n-1) -. - a (Na1) y (n-na) Se todos os a (n) diferentes de a (1) são zero, isso reduz a nosso velho amigo o filtro FIR causal. Este é o caso geral de um filtro (causal) LTI, e é implementado pelo filtro de função MATLAB. Vejamos o caso em que os coeficientes b diferentes de b (1) são zero (em vez do caso FIR, onde a (n) são zero): Neste caso, a amostra de saída corrente y (n) é calculada como um (N-1), y (n-2), etc. Para ter uma idéia do que acontece com esses filtros, vamos começar com o caso em que: Isto é, a amostra de saída atual é a soma da amostra de entrada corrente e metade da amostra de saída anterior. Bem, tome um impulso de entrada através de alguns passos de tempo, um de cada vez. Deve ficar claro neste ponto que podemos facilmente escrever uma expressão para o n-ésimo valor de amostra de saída: é apenas (se MATLAB contado a partir de 0, isso seria simplesmente .5n). Uma vez que o que estamos calculando é a resposta ao impulso do sistema, temos demonstrado por exemplo que a resposta ao impulso pode de fato ter infinitas amostras diferentes de zero. Para implementar esse filtro trivial de primeira ordem no MATLAB, poderíamos usar o filtro. A chamada será assim: eo resultado é: Este negócio é realmente ainda linear Podemos olhar para isto empiricamente: Para uma abordagem mais geral, considere o valor de uma amostra de saída y (n). Por substituição sucessiva poderíamos escrever isto como Isto é exatamente como o nosso velho amigo a forma convolução-soma de um filtro FIR, com a resposta ao impulso fornecida pela expressão .5k. E o comprimento da resposta ao impulso é infinito. Assim, os mesmos argumentos que usamos para mostrar que os filtros FIR eram lineares agora se aplicam aqui. Até agora isso pode parecer um monte de barulho por não muito. O que é toda esta linha de investigação bom para Bem responder esta questão em etapas, começando com um exemplo. Não é uma grande surpresa que possamos calcular uma amostra exponencial por multiplicação recursiva. Vamos olhar para um filtro recursivo que faz algo menos óbvio. Desta vez, torná-lo um filtro de segunda ordem, de modo que a chamada para filtro será da forma Vamos definir o segundo coeficiente de saída a2 para -2cos (2pi40) eo terceiro coeficiente de saída a3 para 1, e olhar para o impulso resposta. Não é muito útil como um filtro, na verdade, mas gera uma onda senoidal amostrada (de um impulso) com três multiplicações por amostra. Para entender como e por que faz isso, e como filtros recursivos podem ser projetados e analisados ​​em O caso mais geral, precisamos dar um passo atrás e dar uma olhada em algumas outras propriedades de números complexos, no caminho para a compreensão da transformada z. Documentação As respostas de freqüência correspondem exatamente, o que prova que o filtro de média móvel é um caso especial de O filtro FIR. Para comparação, veja a resposta de freqüência do filtro sem ruído. Compare a resposta de freqüência dos filtros com a do filtro ideal. Você pode ver que o lobo principal na faixa de passagem não é plano e as ondulações na banda de parada não são restritas. A resposta de frequência dos filtros de média móvel não corresponde à resposta em frequência do filtro ideal. Para realizar um filtro FIR ideal, altere os coeficientes de filtro para um vetor que não seja uma seqüência de 1s escalado. A resposta de freqüência do filtro muda e tende a se aproximar da resposta do filtro ideal. Desenhe os coeficientes do filtro com base em especificações de filtro predefinidas. Por exemplo, projete um filtro FIR equiripple com uma freqüência de corte normalizada de 0,1, uma ondulação de banda passante de 0,5 e uma atenuação de banda de interrupção de 40 dB. Use fdesign. lowpass para definir as especificações do filtro eo método de design para projetar o filtro. A resposta dos filtros na banda de acesso é quase plana (semelhante à resposta ideal) e a banda de interrupção tem efeitos limitados. Saiba mais sobre o Select CountryFIR Filter Noções básicas 1.1 O que são filtros quotFIR Os filtros FIR são um dos dois principais tipos de filtros digitais utilizados em aplicações DSP (Digital Signal Processing), sendo o outro tipo IIR. 1.2 O que quotFIR significa quotFIR significa quotFinite Impulse Responsequot. Se você colocar um impulso, isto é, uma única amostra de 1 quot seguida de muitas quot0quot amostras, os zeros sairão depois que a amostra de quot1quot tiver feito seu caminho através da linha de atraso do filtro. 1.3 Por que a resposta ao impulso é quotfinita? No caso comum, a resposta ao impulso é finita porque não há feedback no FIR. A falta de feedback garante que a resposta ao impulso será finita. Portanto, o termo resposta ao impulso quotfinito é quase sinônimo de "feedback". No entanto, se o feedback é empregado ainda a resposta ao impulso é finito, o filtro ainda é um FIR. Um exemplo é o filtro de média móvel, no qual a N-ésima amostra anterior é subtraída (retrocedida) cada vez que uma nova amostra entra. Este filtro tem uma resposta de impulso finito mesmo que utilize feedback: após N amostras de um impulso, a saída Será sempre zero. 1.4 Como faço para pronunciar quotFIRquot Algumas pessoas dizem que as letras F-I-R outras pessoas pronunciam como se fosse um tipo de árvore. Nós preferimos a árvore. (A diferença é se você fala sobre um filtro F-I-R ou um filtro FIR.) 1.5 Qual é a alternativa aos filtros FIR Os filtros DSP também podem ser QuotInfinite Impulse Response (IIR). (Veja dspGurus IIR FAQ.) Os filtros IIR usam feedback, então quando você insere um impulso, a saída, teoricamente, toca indefinidamente. 1.6 Como os filtros FIR se comparam aos filtros IIR Cada um tem vantagens e desvantagens. Em geral, porém, as vantagens dos filtros FIR ultrapassam as desvantagens, por isso são usadas muito mais do que IIRs. 1.6.1 Quais são as vantagens dos filtros FIR (em comparação com os filtros IIR) Em comparação com os filtros IIR, os filtros FIR oferecem as seguintes vantagens: Podem ser facilmente concebidos para serem fase quotlinear (e normalmente são). Posto simplesmente, os filtros da fase linear atrasam o sinal de entrada mas donrsquot distorcem sua fase. Eles são simples de implementar. Na maioria dos microprocessadores DSP, o cálculo FIR pode ser feito através de uma única instrução. Eles são adequados para aplicações multi-taxa. Por multi-taxa, quer dizer quotdecimationquot (redução da taxa de amostragem), quotinterpolationquot (aumento da taxa de amostragem), ou ambos. Seja decimando ou interpolando, o uso de filtros FIR permite que alguns dos cálculos sejam omitidos, proporcionando assim uma importante eficiência computacional. Em contraste, se forem usados ​​filtros IIR, cada saída deve ser calculada individualmente, mesmo que a saída seja descartada (assim o feedback será incorporado no filtro). Eles têm propriedades numéricas desejáveis. Na prática, todos os filtros DSP devem ser implementados usando aritmética de precisão finita, ou seja, um número limitado de bits. O uso de aritmética de precisão finita em filtros IIR pode causar problemas significativos devido ao uso de feedback, mas os filtros FIR sem retorno podem ser implementados usando menos bits eo designer tem menos problemas práticos a resolver relacionados à aritmética não ideal. Eles podem ser implementados usando aritmética fracionária. Ao contrário dos filtros IIR, é sempre possível implementar um filtro FIR usando coeficientes com magnitude inferior a 1,0. (O ganho global do filtro FIR pode ser ajustado na sua saída, se desejado.) Esta é uma consideração importante ao usar DSP de ponto fixo, porque torna a implementação muito mais simples. 1.6.2 Quais são as desvantagens dos filtros FIR (em comparação com os filtros IIR) Em comparação com os filtros IIR, os filtros FIR têm, por vezes, a desvantagem de exigirem mais memória e / ou cálculo para obter uma determinada característica de resposta do filtro. Além disso, certas respostas não são práticas para implementar com filtros FIR. 1.7 Quais termos são usados ​​na descrição de filtros FIR Resposta de Impulso - A resposta de resposta de um filtro FIR é apenas o conjunto de coeficientes FIR. (Se você colocar um quotimplusequot em um filtro FIR que consiste em uma amostra quot1quot seguida por muitas quot0quot amostras, a saída do filtro será o conjunto de coeficientes, como a amostra 1 passa passado cada coeficiente, por sua vez, para formar a saída.) Tap - Um quottapquot FIR é simplesmente um par de coeficientes de delay. O número de torneiras FIR (frequentemente designado como quotNquot) é uma indicação de 1) a quantidade de memória necessária para implementar o filtro, 2) o número de cálculos necessários, e 3) a quantidade de quotfilteringquot o filtro pode fazer com efeito, Multiplicar-acumular (MAC) - Em um contexto de FIR, uma quotMACquot é a operação de multiplicar um coeficiente pela amostra de dados atrasada correspondente e acumular o resultado. As FIRs geralmente requerem um MAC por toque. A maioria dos microprocessadores DSP implementa a operação MAC em um único ciclo de instrução. Banda de Transição - A faixa de freqüências entre as bordas passband e stopband. Quanto mais estreita for a banda de transição, mais torneiras serão necessárias para implementar o filtro. (Uma banda de transição quotsmallquot resulta em um filtro quotsharpquot.) Delay Line - O conjunto de elementos de memória que implementam os elementos de retardo quotZ-1quot do cálculo FIR. Buffer circular - Um tampão especial que é quotcircular porque incrementar na extremidade faz com que ele envolva ao redor para o início, ou porque decrementing desde o início faz com que ele envolva ao redor para o fim. Os buffers circulares são frequentemente fornecidos por microprocessadores DSP para implementar a quotmoformação das amostras através da linha de retardo FIR sem ter de mover literalmente os dados na memória. Quando uma nova amostra é adicionada ao buffer, ela automaticamente substitui a mais antiga.

No comments:

Post a Comment